Using Simulation to Ensure the Cooling Efficiency of Refrigerated Trucks

Caty Fairclough | September 6, 2016

Refrigerated trucks must maintain a cool temperature in order to avoid damaging the products that they carry. Optimizing the insulation materials and cooling systems of these vehicles is therefore an important step in their design. To ensure that such components work effectively under open- and closed-door cycles, Air Liquide teamed up with SIMTEC, a COMSOL Certified Consultant, to perform heat transfer and CFD simulations with the COMSOL Multiphysics® software.

Read More

Caty Fairclough | August 26, 2016

Around the world, trash is added to landfills at an increasingly rapid rate. Since these landfills take up large areas of land and can cause environmental issues, researchers are looking for safer, space-saving solutions. One option is to convert traditional anaerobic landfills into aerobic bioreactor landfills. This conversion process needs to be studied further, which could take years experimentally. For faster results, researchers at the University of Western Ontario used the COMSOL Multiphysics® software to efficiently analyze this process.

Read More

Beatrice Carasi | August 22, 2016

The numerical analysis of fluid flow and temperature fields can offer valuable insight in many engineering applications. Efficiency, of course, is important when performing such simulations. Here, we’ll discuss the various formulations for fluid flow equations in the COMSOL Multiphysics® simulation software and when it’s best to use each option, paying particular attention to how this selection influences heat transfer analyses. We will also cover how to set up both natural and forced convection simulations using these formulations.

Read More

Bridget Cunningham | August 16, 2016

Like many crops, the quality of dates is heavily impacted by agronomic practices. In Tunisia, for example, such elements have caused these soft edible fruits to become drier in nature. One approach to improving the quality of these dates is thermal processing, where the key unit of operation is hydration. Combining the power of experimental studies with simulation analyses, a team of researchers sought to optimize the hydration process in order to foster greater efficiency and reliability.

Read More

Peng-Chhay Ung | August 15, 2016

The flash method, first described by W.J. Parker et. al in 1961, is a widely used technique for measuring the thermal conductivity of materials. Our Flash Method demo app, highlighted here, performs a numerical simulation of this experiment, offering a simplified approach to modifying parameters that can impact its overall accuracy. Today, we’ll take a closer look at this easy-to-use app, as well as the theory behind it.

Read More

Abbie Weingaertner | August 1, 2016

Modern food processing techniques are constantly being analyzed and improved. To evaluate the efficiency of such techniques and the equipment that they utilize, researchers and engineers can turn to simulation tools like COMSOL Multiphysics. Numerical modeling apps are helping to bring this simulation power to a wider audience, accelerating the optimization of such processes along the way. Let’s see how this applies to the analysis of induction heating for food processing.

Read More

Bridget Cunningham | July 20, 2016

Cryogenic techniques are used to treat a wide range of cosmetic dermatological problems as well as remove internal tumors and other damaged tissue. Shifting from the typical nitrogen-based approach, researchers at the University of Birmingham in the U.K. sought to investigate the potential of using a thermoelectric cooler, or Peltier device, to cool a cryogenic probe. Here’s a look at how COMSOL Multiphysics provided them with the tools to do so.

Read More

Walter Frei | June 30, 2016

Thermostats are used in most homes for controlling furnaces and air conditioners to maintain a comfortable interior temperature. A simple thermostat controlling a heater will have on and off setpoints. Such a control scheme is easy to implement within COMSOL Multiphysics using the Events interface, as presented in a previous blog post. Today, we will expand this technique to include a delay, a time lag between turning the heater on or off, in a thermostat simulation.

Read More

Walter Frei | June 22, 2016

Have you ever wanted to quickly predict the temperature of an enclosed structure, such as your house, that is exposed to ambient environmental conditions? The temperature inside depends on the surrounding air temperature, wind speed, and solar loads, all of which have significant variability. For simplicity, we often also want to approximate the inside air as well-mixed. Today, we will discuss the tools in COMSOL Multiphysics that help you quickly build such thermal models.

Read More

Caty Fairclough | June 21, 2016

Manned vessels traveling through space require highly efficient and reliable life support systems, such as carbon dioxide removal assemblies (CDRAs). Poorly designed systems can shorten missions and cause potential danger. Simulating CDRA systems, however, can be quite time-consuming and difficult due to their complex nature. To address such challenges, a team at NASA’s Marshall Space Flight Center developed a 1D model in the COMSOL Multiphysics® software to efficiently analyze the 4-bed molecular sieve (4BMS) of a CDRA system.

Read More

Caty Fairclough | June 15, 2016

Bolometers have the ability to detect and measure the power of incident electromagnetic radiation. This allows them to be used in a range of technologies, from night vision cameras to far-reaching astronomy projects. Designing bolometers often requires devoting a lot of time and energy to the development phase, as these devices must be optimized for sensitivity and customized for their specific applications. To efficiently design bolometers with increased sensitivity, AltaSim Technologies utilized the simulation capabilities of COMSOL Multiphysics.

Read More


Categories


Tags

1 2 3 12