Analyze Porous Structures with Numerical Modeling

Brianne Costa | May 31, 2016

Reservoirs, dams, and other outdoor structures need to be strong, reliable, and sound. The porous materials found within these structures can be easily damaged by pressure changes that cause fluid flow and gradual caving and sinking. Using the multiphysics simulation capabilities of COMSOL Multiphysics and the Poroelasticity interface, we can accurately analyze porous materials to evaluate and avoid deformation in such structures.

Bridget Paulus | May 16, 2016

When an electronic device overheats, it risks starting a fire. Cooling components, such as heat sinks, are designed to prevent this, but can’t always keep up with advancing technology. Simulation offers a solution by illustrating how well various heat sink designs conduct heat and how adding elements like manifold microchannels (MMC) improves performance. Today, we’ll explore how an MMC heat sink operates with simulation.

Caty Fairclough | May 3, 2016

Why are the famous paintings on the walls of a Netherlands chapel deteriorating? To answer this question, researchers from the Eindhoven University of Technology used physical measurements and simulation to evaluate how rising moisture affects the chapel’s artwork. Today, we’ll see how their research helped provide a better understanding of the damage occurring within this cultural heritage site.

Bridget Cunningham | April 18, 2016

Removing bacteria and contaminants from water is an important point of concern for safety reasons. One method of purification involves the use of water treatment basins. CFD modeling provides an efficient route for optimizing the design of these basins to ensure their overall effectiveness. Simulation apps, as we’ll highlight here, are taking things one step further by extending the scope of such modeling capabilities to a much wider audience.


Fabrice Schlegel | March 17, 2016

When you think of a stout beer, one type that may come to mind is Guinness® beer. This stout is very special, noticeable by its dark body and famous white head. The dynamics of the foam alone are interesting enough to write a series of blog posts about. Although I don’t drink Guinness® beer (I’m a fan of IPA), I found the longstanding debate about whether its bubbles are rising or sinking while the beer settles makes an interesting simulation.


Bridget Cunningham | March 1, 2016

When diagnosed with end-stage renal disease (ESRD), a form of permanent kidney failure, patients must undergo dialysis to replace the blood cleaning function of kidneys. Dialysis requires vascular access, a process where blood is removed, purified, and returned to the patient’s vasculature. Current methods for providing access, however, suffer from high failure rates. Combining CFD simulations with shape optimization techniques provides a way to better understand and predict such failure.


Aditi Karandikar | May 11, 2016

Lasers, focused beams of photons of a single wavelength, find use in a wide variety of applications today — from noninvasive surgeries and fiber optic communication to material processing and even DVD players. Let’s see how a research team from Lawrence Livermore National Laboratory (LLNL) used the power of multiphysics simulation to investigate laser-material interaction to avoid the damage of optics internal to high-power laser systems.

Phillip Oberdorfer | April 21, 2016

We previously wrote about how engineers at IAV, a leading automotive engineering company, used simulation to reduce sloshing in vehicles. Today, we’ll demonstrate how to set up your own sloshing tank model in COMSOL Multiphysics using a separated two-phase flow model with two fluids that have a large difference in density.


Angela Straccia | March 29, 2016

Are you solving turbulent flow problems in your CFD analyses? Then you may be familiar with the large computation time that can result from difficulties in finding the numerical solution. Such difficulties are caused by nonlinearities that arise in the turbulence model equations. Viscosity ramping can help decrease the computation time by solving for higher viscosities and using the solutions as initial conditions for the problem at lower viscosities. We’ll show you how to implement this technique in COMSOL Multiphysics.


Abbie Weingaertner | March 14, 2016

Geothermal heat pumps offer an environmentally friendly option for heating modern, well-insulated homes. Oftentimes, many configurations are explored before deciding on the most effective ground heat recovery system. Simulation tools like COMSOL Multiphysics can be used to analyze different iterations to ensure an optimal final design. With the introduction of easy-to-use simulation apps, such modifications no longer require the skills of a simulation expert. Instead, colleagues can investigate design changes, run their own simulations, and evaluate results.

Ed Fontes | January 26, 2016

The rotation of the impellers in a mixer or stirred reactor creates ripples on the liquid surface when the agitation is moderate. If the ripples are small in comparison to the height of the fluid in the vessel, the shape and height of the free surface can be explicitly calculated from the velocity field in a separate solution step. The latest version of the Mixer Module in COMSOL Multiphysics includes a Stationary Free Surface feature for such computationally inexpensive calculations.


1 2 3 13