Veryst Combines Material Testing and Simulation for Reliable Results

Fanny Griesmer March 11, 2019

Success in today’s marketplace comes down to both developing reliable products that work as intended and launching them at the right time. Like many other companies out there, Veryst Engineering has found that simulation is an effective tool for looking inside a product and ensuring that the design meets specifications prior to prototyping or manufacturing. For this to work, simulations have to match real-world responses, and understanding material behavior plays a central role. However, not all materials behave predictably.

Read More

Bridget Paulus March 5, 2019

Charge exchange cells can alter the charge of an ion beam, making them useful in fusion reactors, particle accelerators, and semiconductor fabrication equipment. Improving the design of these devices, though, can be time consuming, as many factors (like the input beam’s energy, cell geometry, and neutral number density) affect their performance and must be tested. While these analyses are typically done by simulation experts, they can make the design of such devices accessible to others by building a simulation application…

Read More

Guest F. Xavier Alvarez February 28, 2019

Today, we invite guest blogger F. Xavier Alvarez of Universitat Autònoma de Barcelona (UAB) to discuss modeling heat transfer at the nanoscale using a novel theoretical framework and the COMSOL Multiphysics® software.

Read More

Daniel Ericsson February 26, 2019

Industry 4.0 and digital twins are buzzwords we hear on a daily basis. But how far have companies come, and how does COMSOL come into play in the new era? Here, we will look into one successful case, where ABB Traction Motors intends to make mass customization available by using simulation applications for electric motor design. By turning high-fidelity multiphysics models into simulation applications, new analysis capabilities are planned to be available to several departments, from product design to sales.

Read More

Bridget Paulus February 12, 2019

Heating circuits can be found in airplanes, electronic message boards, medical storage devices, and much more. Like many other heating elements, these circuits work through resistive heating, a multiphysics process involving electric currents, heat transfer, and structural deformation. To account for these phenomena and other key design factors, engineers can create virtual prototypes of heating circuits using the COMSOL Multiphysics® software.

Read More

Thomas Forrister January 29, 2019

When you think of fire protection measures, what might come to mind first is the logistics of getting everyone out of the building safely (i.e., without exposure to hazardous smoke, chemicals, and hot temperatures). Supporting these procedures are active measures like alarm and sprinkler systems, and passive measures built into the structure to minimize damage. To ensure that a building is designed with fire protection in mind, engineers can simulate actions on structures exposed to fire.

Read More

Bridget Paulus January 28, 2019

Cables provide power to sky-high airplanes, underground mines, and offshore wind farms. Depending on the use case, cables can have vastly different shapes, sizes, and environments — all of which affect their performance. In his keynote talk at the COMSOL Conference 2018 Lausanne, Adrien Charmetant of Nexans explained how multiphysics modeling is used to optimize cable designs. Below, you can find a summary and video of his presentation.

Read More

Brianne Christopher January 22, 2019

The EPFLoop team took the stage at the COMSOL Conference 2018 Lausanne with their hyperloop pod design, setting it down for the crowd to see. Learn about the different ways that the team of students and faculty from the École Polytechnique Fédérale de Lausanne, led by Mario Paolone and including Nicòlo Riva, Zsófia Sajó, and Dr. Lorenzo Benedetti, used multiphysics simulation to land in the top spot for hyperloop design at the 2018 SpaceX competition.

Read More

Brianne Christopher January 21, 2019

In a fluid-structure interaction (FSI) scenario, the fluid can affect the structure, the structure can affect the fluid flow, or both. When modeling a device that relies on FSI, you may want to simulate one of these options, a combination, or all three. The Fluid-Structure Interaction multiphysics coupling in the COMSOL® software makes it easy to implement FSI in your analyses. In this blog post, we study the flow through a ball check valve for different flow directions and pressures.

Read More

Erik Melin January 16, 2019

The goal of mesh adaptation is to modify the mesh to solve a problem more efficiently. We want to use as few elements as possible to obtain an accurate solution. Typically, we would like a coarser mesh in regions that are not very important and a more refined mesh in regions of interest. We might even consider anisotropic elements. As of version 5.4, the COMSOL Multiphysics® software includes enhanced tools to adapt a mesh. Let’s take a look.

Read More

Bridget Paulus December 31, 2018

An air ambulance flies overhead, speeding toward a hospital with a life-saving treatment. This “treatment” isn’t a new medicine or machine but an organ on its way to a patient on a transplant list. To keep the organ at just the right temperature during transport, it’s placed inside a special container called a cold or isothermal box. By using simulation, you can analyze the design of these boxes, making sure that they’re reliable for their life-saving purpose.

Read More


Categories


Tags

1 2 3 31