The Boundary Element Method Simplifies Corrosion Simulation

Bertil Nistad | February 17, 2016

In version 5.2 of COMSOL Multiphysics, we offer a new feature for simulating corrosion in slender structures. This significantly speeds up the total time spent when working with structures such as oil platforms. By using the boundary element method (BEM) and specialized beam elements in the Current Distribution on Edges, BEM interface, there is no longer a need for a finite element mesh to resolve the whole 3D structure, saving time for large corrosion problems consisting of slender components.

Read More

Lexi Carver | December 28, 2015

Corrosion is one of the most serious factors affecting the transportation industry. In an effort to minimize its impact, a German research institute and the manufacturers of Mercedes-Benz joined forces to investigate the corrosion occurring in automotive rivets and sheet metal. Using COMSOL Multiphysics simulation, they were able to study corrosion’s effects on car components.

Read More

Caty Fairclough | August 6, 2015

Avoiding corrosion in a harsh ocean environment often requires the use of cathodic protection methods. These utilize different tools, such as sacrificial anodes or impressed currents, to help maritime-based industries stay afloat. One such system, impressed current cathodic protection (ICCP), mitigates corrosion by applying an external current to a ship hull. The efficiency of this method depends on factors such as the use of a coated propeller. Here, we use simulation to investigate how coating a propeller affects ICCP efficiency.

Read More

Categories

Jennifer Segui | June 11, 2015

At Boeing, innovation comes in the form of modern aircraft such as the 787 Dreamliner, whose body is made up of over 50% carbon fiber composite. While incredibly lightweight and strong, such aircraft composites are not inherently conductive, thus requiring additional protective coatings to mitigate lightning strike damage. Here, we describe how multiphysics simulation is used to evaluate thermal stress and displacement in the protective coatings that undergo temperature fluctuations associated with the typical flight cycle.

Read More

Fanny Littmarck | May 22, 2014

If you work in the oil and gas industry dealing with offshore drilling, corrosion is your worst enemy. A corroded oil platform is a dangerous platform and it can cost you a lot — in both lives and money. To avoid such a dark fate, you need to safeguard the steel structure from corrosion via a protection system, such as the cathodic protection process shown here.

Read More

Categories

Edmund Dickinson | February 7, 2014

In electrochemical cell design, you need to consider three current distribution classes in the electrolyte and electrodes. These are called primary, secondary, and tertiary, and refer to different approximations that apply depending on the relative significance of solution resistance, finite electrode kinetics, and mass transport. Here, we provide a general introduction to the concept of current distribution and discuss the topic from a theoretical stand-point.

Read More

Brianne Costa | October 7, 2015

While the offshore oil industry is usually very profitable, it can also be unpredictable, and at times, dangerous. Corrosion in steel oil platforms can lead to damage and failure of the structure, loss of business, and even on-site accidents. Fortunately, there are various ways to investigate and prevent corrosion in these structures to ensure a safe and productive drilling operation.

Read More

Categories

Pankaj Nerikar | July 20, 2015

Corrosion is a widely encountered issue in the automotive industry. To account for and prevent this problem, industry leaders often run experiments to test the corrosion resistance of vehicles. Simulation, however, offers a simplified approach to addressing this phenomenon in automobiles — one that saves time, money, and resources.

Read More

Categories

Jennifer Segui | September 3, 2014

Billions of dollars are spent each year in the U.S. to repair corrosion damage. To help reduce the high cost of corrosion, engineers at the Naval Research Laboratory (NRL) in Washington, D.C. are using multiphysics simulation to gain a better understanding of the fundamental mechanism. A successful research outcome at NRL will establish the correlation between metal microstructure, corrosion, and mechanical strength. Material designers could then develop stronger, corrosion-resistant materials using this new information.

Read More

Melanie Noessler | February 10, 2014

When designing electrochemical cells, we consider the three classes of current distribution in the electrolyte and electrodes: primary, secondary, and tertiary. We recently introduced the essential theory of current distribution. Here, we illustrate the different current distributions with a wire electrode example to help you choose between the current distribution interfaces in COMSOL Multiphysics for your electrochemical cell simulation.

Read More

Laura Bowen | June 18, 2013

If you roast a turkey for dinner and you need to check the temperature, the technology exists to find it. But what happens if the temperature is so hot that a consumer-grade thermometer, or any man-made device, really, would instantly melt and be destroyed? This might not be a common occurrence in your kitchen, but it is a real concern in blast furnaces, where temperatures can reach close to 1,500°C. Simply guessing is far from safe. Luckily, by simulating with […]

Read More

1 2