Evaluating Microphones and Transducers with Simulation

Aditi Karandikar | August 2, 2016

Acoustic measurements aren’t always accurate due to imperfections in the measurement tools. To limit incorrect results, devices, such as microphones and vibration transducers, have standards that define their allowable margin of error. Meeting these standards is required, but good measurement tools go a step further and keep their error range consistent over time. To create quality devices, research teams at Brüel & Kjær use multiphysics simulation to model their microphone and transducer designs.

Read More

Caty Fairclough | June 2, 2016

When designing motorcycles, noise reduction is a primary area of concern. Loud, poorly designed motorcycles may not meet noise regulations or satisfy customers. As such, there is a need to reduce motorcycle noise by identifying and eliminating its sources. To do so, researchers at Mahindra Two Wheelers, Ltd. turned to acoustics simulation.

Read More

Categories

Bridget Cunningham | May 23, 2016

In various engineering fields, studying acoustic reflection and absorption is an important point of consideration. Simulation is a valuable tool for performing such analyses, helping to better explain how sound waves interact with their surrounding surfaces. Today, we’ll look at how the Application Builder is extending the reach of such simulation capabilities by using the example of acoustic reflections off a water-sediment interface.

Read More

Bridget Cunningham | May 2, 2016

Graphene is a material with a strong presence — and impact — throughout the scientific community. Amongst its many uses, researchers are looking to graphene as a potential material solution within sensor designs for medical and biosensing applications. Today, we’ll explore the role of simulation in analyzing and optimizing a 3D multilayered graphene biosensor.

Read More

Brianne Costa | April 20, 2016

We’ve talked a lot on the blog about the different types of simulation apps that you can build. But did you know that you can create an app that plays sounds? The Organ Pipe Designer allows users to investigate the parameters behind an organ pipe configuration and then play the resulting sounds to really see — and hear — a design in action. Let’s learn more about the physics behind our underlying model and its transformation into an easy-to-use app.

Read More

Alfred Svobodnik | April 4, 2016

Today, we welcome Managing Director Dr. Alfred J. Svobodnik of Konzept-X GmbH, a COMSOL Certified Consultant and developer of multidisciplinary virtually optimized industrial design technology (M-voiD® technology). MP3 players, smartphones, and tablets allow us to listen to our favorite music almost everywhere. While driving in a car, we should also enjoy the highest sound quality. Learn how to use simulation to reproduce sound in one of the most difficult environments — a vehicle — to design better automotive sound systems.

Read More

Linus Andersson | March 15, 2016

Over the 10th through 18th centuries, the sound holes in violins evolved from a circular shape to an elongated f shape. In a recent research paper, MIT scientists and violin makers from the North Bennet Street School in Boston investigated the effects of this change in shape. They suggest that the f-shaped holes increase the air flow, making the bass notes of the violin twice as loud. Today, we will reproduce their findings with COMSOL Multiphysics.

Read More

Categories

Linus Fagerberg | February 24, 2016

Today, guest blogger Linus Fagerberg of Lightness by Design, a COMSOL Certified Consultant, shares how multiphysics simulation provides accuracy in automotive muffler design. The acoustic design of mufflers in the automotive industry has traditionally been performed by an iterative process where different alternatives are compared by experimental methods until a satisfactory design is found. Numerical simulation can drastically reduce a project’s time and expenses, while simultaneously increasing the performance of the muffler.

Read More

Caty Fairclough | February 11, 2016

Before building a house, architects and engineers look to optimize the sound quality of their design. Simulation tools like COMSOL Multiphysics are a valuable resource for doing so, generating accurate results while saving on costs. With apps, this workflow is becoming even more efficient. Those with little knowledge of simulation now have the ability to run their own acoustics analyses and obtain results more quickly. Take a look at our One-Family House Acoustics Analyzer for both insight and inspiration.

Read More

Mads Herring Jensen | January 21, 2016

COMSOL Multiphysics version 5.2 introduced a number of new features and functionality, including an acoustics-specific plot type called the Octave Band plot. This plot type provides you with an easy and flexible way to represent any frequency response, transfer function, sensitivity curve, transmission loss, or insertion loss — all of which are essential plots in many acoustics applications. Let’s learn a bit more about the Octave Band plot, while highlighting its various options and settings.

Read More

Categories

Bridget Cunningham | December 30, 2015

Mufflers are used for acoustic soundproofing in combustion engines and HVAC systems. Before achieving optimal performance, a muffler design can go through several iterations. COMSOL Multiphysics provides a flexible environment for testing different designs, saving time and costs while ensuring high performance. Now, with simulation apps, each modification no longer requires the help of a simulation expert. Instead, colleagues can run their own tests and deliver faster results to customers. Our Absorptive Muffler Designer demo app offers insight.

Read More


Categories


Tags

1 2 3 5