Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library modifies the substrate geometry by adding two additional layers and uses the material copper in certain ...

Simulation of a Polyimide Based Micromirror

A. Arevalo[1], S. Ilyas[2], D. Conchouso[1], I. G. Foulds[1,3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]Physical Sciences & Engineering (PSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[3]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

The simulation of a micromirror using polyimide as the structural material is presented. The simulation was used to verify the initial design parameters and to explore the different characteristics of the electromechanical device. For simulation simplicity the electrodes are integrated as part of the structural layer. The device thickness is 6 μm while the electrodes are 300 nm thick. For the ...

Simulation and Performance of Pulsed Pipe Flow Mixing in Non-Newtonian Liquid Dispersion Media - new

T. Koiranen[1], J. Tamminen[1], A. Häkkinen[1]
[1]LUT Chemtech, Lappeenranta University of Technology, Lappeenranta, Finland

A non-newtonian oil dispersion in a pulsed flow pipe system was mixed in a circulation loop pipe with custom-made static mixers. The rotor-pump was used in a non-pulsed flow circulation, and diaphragm pump for pulsed flow circulation. Modeling was done using COMSOL Multiphysics® 4.3b. The simulations were performed using single-phase laminar flow model in steady-state and in time-dependent modes ...

Energy Pile Simulation – an Application of THM-Modeling

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical coupling. The fluctuating thermal regime may affect the deformation of pile and surrounding ground as effect of ...

3D Multiphysics Model of Thermal Flow Sensors

C. Falco[1], A. De Luca[1], S. Sarfraz[1], F. Udrea[1]
[1]University of Cambridge, Cambridge, UK

The aim of this work is to present a model capable to describe the behaviour of a thermal flow sensor under every physical aspect. A generic thermal flow sensor relates the flow properties with a variation in the temperature profile inside the device itself. Thus, it is locally heated up with a resistive element biased with an external current, surrounded by one or more temperature sensing ...

Modeling of Kinetic Interface Sensitive Tracers for Two Phase Immiscible Flow in Porous Media with COMSOL Multiphysics® Software

A.-B. Tatomir[1], F. Maier[1], A. Jyoti[1], M. Sauter[1]
[1]Geoscience Centre of the University of Göttingen, Göttingen, Germany

The understanding of the tracer migration in two-phase porous media systems and its reaction over the fluid-fluid interfaces is a challenging task important for a number of engineering applications, e.g. oil recovery, carbon capture and storage in geological reservoirs, remediation groundwater contaminations, etc. The goal of this work is to implement in COMSOL Multiphysics® an immiscible ...

Design and Simulation of an Orbiting Piezoelectric MEMS Gyroscope Based on Detection of Phase-Shift Signals

S. Gorelick[1], J. R. Dekker[1], B. Guo[1], H. Rimminen[1]
[1] VTT Technical Research Centre of Finland, Espoo, Finland

The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the orbiting motion due to their angle-dependent spring constant. The response of the orbiting resonators to angular ...

Microsoft Technical Computing

H. Steepler
Microsoft, Sweden

Henrik Steepler earned his PhD in Computer Science in 1999 at Chalmers University, Sweden. Since 2003, he has been working at Microsoft on emerging markets like Security, Virtualization, and since 2007 on their High Performance Computing (HPC) initiative. He is now managing the partner network for Microsoft in Europe, the Middle East, and Africa around HPC.

On the Drying Dynamics in Biofilters

F. Schönfeld
Hochschule RheinMain
University of Applied Sciences
Wiesbaden, Germany

The performance of biofilters relies on the presence of a sufficient amount of water in the biofilter material. And breakdown of filtration performance is often caused by inappropriate water content. The present study focuses on the drying dynamics within such filter, which are modelled as wetted porous media. Analyzing gas flow and water content we find that such systems exhibit instable ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Quick Search

3181 - 3190 of 3626 First | < Previous | Next > | Last