Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Eigenmodes of Photoacoustic T-cells

Baumann, B.1, Kost, B.1, Groninga, H.2, Wolff, M.1, 2
1 University of Applied Sciences Hamburg, Mechanical and Production Engineering
2 PAS-Tech GmbH, Zarrentin

The photoacoustic effect is based on resonant absorption of light by a sample and the transfer of the excitation energy into thermal energy via inelastic collisions of gas molecules. A modulated irradiation of the sample causes periodic pressure variations that can be detected by a microphone and measured using lock-in technique. Photoacoustic spectroscopy finds many applications in the field of ...

FEMLAB as a Front-end for Large-scale Acoustic Modeling Parallelized Wave Basis Solver for the 3D Helmholtz Problems

Huttunen, T.1, Malinen, M.1, Vanne, A.1, Monk, P.2 1 University of Kuopio, Department of Applied Physics, Kuopio, Finland
2 University of Delaware, Department of Mathematical Sciences, Newark, DE, USA

We introduce an extension for FEMLAB's acoustic mode which uses the ultra-weak variational formulation (UWVF) method for solving 3D Helmholtz problems. The solver, calledWaveller, uses FEMLAB's graphical interface for creating geometries, generating meshes, post-processing and visualization. However, the solution of acoustic wave problems using the UWVF significantly reduces the computational ...

3-D Multiphysics Modeling of a Producing Hydrocarbon Field

McKenna, J.R.1, Blackwell, D.D.2
1 U.S. Army Engineer Research & Development Center, Geotechnical & Structures Laboratory, Vicksburg, Mississippi
2 Department of Geological Sciences, Southern Methodist University, Dallas, Texas

Thermal anomalies indicating elevated temperatures often are present in producing hydrocarbon fields. This paper discusses precision temperature logs obtained over a salt dome in the Bayou Bleu hydrocarbon field in southwest Lousiana, and presents a 3-D thermal-fluid model of the dome constrained by these types of logs. The numerical model in which both an enhanced thermal conductivity ...

Simulation of magnetic injection moulding

Ogur, E.O., Goodship, V., Smith, G.F.
University of Warwick

Magnetic fields play a crucial role in materials science and they have been used extensively in the study of materials where they tend to alter the dynamics of charged particles. The purpose of this paper is to investigate the effect of an external magnetic field generated from a permanent magnet and its interaction, during the injection moulding, with polymer containing ferromagnetic nickel ...

Analysis of magnetohydrodynamics GTAW arc behavior

Roger, F.
Ecole Nationale Superieure de Techniques Avancées, PARIS

Argon plasma behavior in gas tungsten arc welding (GTAW) is directly linked to the weld quality. Indeed, the arc is the heat source which drives the weld shape. Solution of an induction-diffusion equation under axial symmetry conditions has been developped using thermal conduction and convection module of FEMLAB 3.1©. We predict current distribution in electric arc, induced magnetic field ...

Modeling transport in silicon nanocrystal structure

Leroy, Y., Leriche, B., Cordan, A.S.
InESS — ENSPS, UMR 7163, ILLKIRCH, France

We present in this paper a model to study new memory devices with embedded nanocrystals, emerging in microelectronics. The theoretical calculations and their implementation in FEMLAB are detailed, leading to a quite simple and realistic model. One key point for these memories is the electronic tunnel transfer to store the charge into a nanocrystal. This is why we carry out a brief analysis of ...

Zeitliche Entwicklung der Elektronendichteverteilung in einer linear ausgedehnten Plasmaquelle

Graf, M., Räuchle, E., Hunyar, C., Unger, R., Kaiser, M., Emmerich, R., Urban, H., Alberts, L., Elsner, P.
Fraunhofer-Institut für Chemische Technologie, Pfinztal, Germany

In this article the time variable development of electron density in low pressure microwave discharges is examined. Exemplarily the linear extended plasmaline® is simulated in an axially symmetric two-dimensional application mode. The multiphysics environment of FEMLAB allows a self consistent solution of Maxwell’s equations together with a simple model for generation and loss of electron ...

Enhanced multipole boundary conditions in FEMLAB

Kildishev, A.1, Danielsson, E.2
1 Purdue University, School of Electrical and Computer Engineering
2 COMSOL AB

Designers of electromagnetic and electromechanical devices often need to predict external magnetic fields of devices with good accuracy. This paper considers a less common approach to the open boundary problems, which is built on the spatial harmonic analysis (SHA) of the field over a basis boundary of the finite element (FE) domain. It is important that the spatial harmonic analysis of complex ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Inductive FEA - Benchmark Optimization

J. Feigenblum[1], D. Perrier[1], Y. Mocellin[1], and E. Roland[2]
[1]ROCTOOL, Savoie Technolac, Le Bourget du Lac, France
[2]Laboratoire SIMAP, Bâtiment EPM, St Martin d’Hères, France

In this paper, after a brief presentation of our company, we will detail our technology and the importance of the simulation step. In the same time, we will describe different levels of FEA (Finite Element Analysis) we have followed and we will conclude on the best balance, for our industrial target, between complexity of models and accuracy of results.

Quick Search

2691 - 2700 of 3230 First | < Previous | Next > | Last