Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

2D Simulation of Cardiac Tissue

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce ...

Design and Simulation of an Orbiting Piezoelectric MEMS Gyroscope Based on Detection of Phase-Shift Signals

S. Gorelick[1], J. R. Dekker[1], B. Guo[1], H. Rimminen[1]
[1] VTT Technical Research Centre of Finland, Espoo, Finland

The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the orbiting motion due to their angle-dependent spring constant. The response of the orbiting resonators to angular ...

Generalized Plane Piezoelectric Problem: Application to Heterostructure Nanowires

H. T. Mengistu[1], A. García-Cristóbal[1]
[1]Material Science Institute, University of Valencia, Valencia, Spain

The possibility to dispose of two-dimensional (2D) approaches to problems originally posed in a three-dimensional (3D) geometry is always desirable since it reduces significantly the computing resources needed for numerical studies. In this work we report on a new 2D approach called Generalized Plane Piezoelectric (GPP) problem [1] and apply it to the calculation of the strain and electric fields ...

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics

A. Salari[1], C. Dalton[1]
[1]University of Calgary, Calgary, AB, Canada

AC electrothermal (ACET) micropumps are based on the temperature gradient caused by Joule heating or an external heat source in the bulk of an electrolyte. In this paper, a 2D simulation was performed to study the effect of substrate thickness and material (glass and silicon) for an ACET micropump configuration. Electric field distribution was obtained assuming coplanar asymmetric ...

Digital Microfluidic Droplet Adapter for Interconnection of Biochips

R. Zhu[1], X. Xiong[2], P. Patra[1], C. Jin[1], J. Hu[3]
[1]Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical & Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[3]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

In this research, we use the COMSOL Multiphysics® software to design and simulate a digital microfluidic droplet adapter for board-level biochip integration. Digital Microfluidic Biochip (DMFB) has gained tremendous research interest in recent years due to its importance in Lab-on-a-Chip and other bio-MEMS (bio-Microelectromechanical Systems) devices. However, different DMFB microarray from ...

Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library modifies the substrate geometry by adding two additional layers and uses the material copper in certain ...

Simulation of a Polyimide Based Micromirror

A. Arevalo[1], S. Ilyas[2], D. Conchouso[1], I. G. Foulds[1,3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]Physical Sciences & Engineering (PSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[3]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

The simulation of a micromirror using polyimide as the structural material is presented. The simulation was used to verify the initial design parameters and to explore the different characteristics of the electromechanical device. For simulation simplicity the electrodes are integrated as part of the structural layer. The device thickness is 6 μm while the electrodes are 300 nm thick. For the ...

Simulations of Micropumps Based on Tilted Flexible Structures

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC., Needham, MA, USA
[2]Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

FEM Correlation and Shock Analysis of a VNC MEMS Mirror Segment

E. Aguayo[1], R. Lyon[2], M. Helmbrecht[3], S. Khomusi[1]
[1]The Newton Corporation, Bowie, MD, USA
[2]NASA Goddard Space Flight Center, Greenbelt, MD, USA
[3]Iris AO, Inc., Berkeley, CA, USA

Microelectromechanical systems (MEMS) are becoming more prevalent in today’s space technologies. The Visible Nulling Coronagraph (VNC) instrument, being developed at the NASA Goddard Space Flight Center, uses a MEMS Mirror to correct wavefront errors. This MEMS, the Multiple Mirror Array (MMA), will enable the VNC instrument to detect Jupiter and ultimately Earth size exoplanets. The MMA ...

Simple Finite Element Model of the Topografiner

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the capabilities ...

Quick Search