Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Mobility of Catalytic Self-Propelled Nanorods Modeling with COMSOL Multiphysics®

F. Lugli[1] and F. Zerbetto[1]
[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

A small particle or a nano-sized object placed in a liquid is subject to random collisions with solvent molecules. The resulting erratic movement of the object is known as Brownian motion, which, in nature, cannot be used to any practical advantage both in natural systems (such as biomolecular motors) or by artificial devices. If energy is supplied by external source or by chemical reactions, ...

Wave Energy Converter through Piezoelectric Polymers

A. S. Zurkinden1, F. Campanile1, and L. Martinelli2
1Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
2Università di Bologna, Bologna, Italy

This note addresses the concept of wave energy conversion by means of a piezoelectric material. The ocean surface waves represent an important source of energy. A multiphysics simulation is used to focus on different aspects, namely the free surface wave, the fluid-structure interaction, the mechanical energy input to the piezoelectric material and the electric power output, using an equivalent ...

Development of an Optically-Controlled Biochip

S. Maruo
Yokohama National University, Japan

In this presentation, we present our work on optically controlled microfluidic systems. This includes both numerical simulations and experiments.

Computational Simulation of Electrohydrodynamic Systems Pertaining to Micro and Nano scale Fluid Flow Phenomenon

M. Seiler[1], and B. Kirby[2]
[1]Department of Engineering Physics, Cornell
University, NY, USA
[2]Department of Mechanical Engineering, Cornell
University, NY, USA

Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally calculating systems of fluid flow phenomena governed by AC Electroosmosis in the micro and nano scale regimes.

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Coupled Electromagnetic - Dynamic FEM Simulation of A High Frequency MEMS Energy Harvester

E. Topal
Middle East Technical University
Ankara
Turkey

In this study, a detailed finite element model coupling the motion dynamics and electromagnetics of a diaphragm based MEMS vibration energy harvester is presented. The energy harvester converts low frequency vibrations to high frequency response by magnetic actuation of a diaphragm carrying coils. AC/DC, Solid Mechanics and Moving Mesh (ALE) modules are coupled together in one 3-D model to ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University
Japan

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Designing and Simulating the Performance Analysis of Piezoresistive Fluid Flow Pressure Sensor

K. PraveenKumar[1], P. Suresh[1], K. Subash[1], M. Alagappan[1], A. Gupta[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India.

In this work, we present the performance analysis of novel micro machined Piezoresistive fluid flow pressure sensor using COMSOL Multiphysics. The principle of the sensing mechanism is based on the deflection of four sensing layers embedded on a thin membrane. The fluid passes through the layer causes the deflection of the sensing layer which measures the pressure of the fluid. The following ...

Water spreading anaysis on fabrics surfaces

Fichet, D.1, Lesage, F.1, Ventenat, V.2, Latifi, M.A.2
1 Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, Nancy Cedex, France
2 Centre de recherche Decathlon, Villeneuve d’Ascq, France

This paper deals with experimentation, modelling, simulation and optimisation of a Moisture Management Tester (MMT) which is used to determine the liquid spreading and transfer rates of a fabric. A 3D model was developed and implemented within FEMLAB. It consists of partial differential equations describing the mass balance of water adsorbed on the fibres and water moving in the free volume ...

Quick Search