Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]
[1]ACOUSTICS@MBD CONSULTANTS, LLC, Westborough, MA, USA

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such composites ...

Effect of Geometry of the Grooves on the Mixing of Fluids in Micro Mixer Channel

V. Ranjan[1], A. Kumar[1], G. Prakash[1], R. Mandal[1]
[1]Department of Mechanical Engineering, Indian School of Mines, Dhanbad, Jharkhand, India

Understanding the flow fields at the micro-scale is a key to develop methods of successfully mixing fluids for micro-scale applications. This paper investigates flow characteristics and mixing of three different geometries in micro-channel. A Circular groove micro mixer has been designed and simulated. One such channel is shown in Figure1. The geometry of the channels taken was rectangular with a ...

Design and Analysis of MEMS Gyroscope

L. Sujatha[1], B. Preethi[1]
[1]Rajalakshmi Engineering College, Chennai, India

MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the reduction of the damping effect. This MEMS based gyroscope was designed using COMSOL Multiphysics 4.2a. This ...

Fluid-structure Interaction Modeling of Air Bearing

H.R. Javani[1], P. Kagan[2], F. Huizinga[1]
[1]ASML - MDev – Mechanical analysis, Veldhoven, The Netherlands
[2]ASML - MDev – System Dynamics, Veldhoven, The Netherlands

Air bearings are special type of bearings which provide nearly zero friction between two surfaces. This is achieved by a compressed layer of gas between the surfaces. This study presents a modeling technique for an Air bearing component. COMSOL Multiphysics® is used to efficiently solve a coupled Fluid-Structure Interaction analysis. Computational time is significantly reduced compared to ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...

Design of MEMS-based Microcantilever for Tuberculosis Detection

Saranya K[1], Saranya R[1], Ceemati D[1], Chandra Devi K[1], Meenakshi Sundaram N[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Tuberculosis is infectious disease caused by various strains of Mycobacterium tuberculosis. The detection is very difficult because their mechanism is not well understood, and it is mainly based on the γ interferon which is normally secreted by the T-cell of the body. The RD1 region is genomic and is present in all strains of Mycobacterium tuberculosis. The ESAT-6/CFP-10 complex is secreted by ...

Modeling and Analysis of Thermal Bimorph using COMSOL Multiphysics®

Rachita Shettar[1], Dr. B G. Sheparamatti[1]
[1]Basaveshwar Engineering College, Bagalkot, Karanataka, India

In this paper modeling and simulation results of a thermal bimorph is capable of producing increased displacement for increasing temperatures are presented. Thermal bimorphs are popular actuation technology in MEMS (Micro-Electro-Mechanical Systems). Bimorph actuators consist of two materials with different coefficients of thermal expansion. The main objective of this work is to investigate the ...

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we use ...

A Computational Approach for Simulating p-Type Silicon Piezoresistor Using Four Point Bending Setup

T.H. Tan[1], S.J.N. Mitchell[1], D.W. McNeill[1], H. Wadsworth[2], S. Strahan[2]
[1]Queen's University Belfast, Belfast, United Kingdom
[2]Schrader Electronics Ltd, Antrim, United Kingdom

The piezoresistance effect is defined as change in resistance due to applied stress. Silicon has a relatively large piezoresistance effect which has been known since 1954. A four point bending setup is proposed and designed to analyze the piezoresistance effect in p-type silicon. This setup is used to apply uniform and uniaxial stress along the crystal direction. The main aim of this work is to ...

Optimizing the Performance of MEMS Electrostatic Comb-Drive Actuator with different Flexure Springs

S. Gupta[1], T. Pahwa[1], R. Bansal[1], V. Bansal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department Kurukshetra University, Kurukshetra, Haryana

A new design of electrostatic comb drive actuator is presented in this paper by using different spring designs and with different folded beam lengths. An increased displacement of lateral comb drive actuator will subsequently be accomplished with the same actuation voltage. Stress distribution over different spring designs are simulated by COMSOL 3.5a using a standard comb drive with 4 movable ...

Quick Search