Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure sensors are proposed to enhance its sensitivity in terms of output voltage. This paper aims in sensitivity ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Theory of Proportional Solenoids and Magnetic Force Calculation Using COMSOL Multiphysics

O. Vogel, and J. Ulm
Heilbronn University
Campus Künzelsau
Künzelsau, Germany

Proportional solenoids are well-known and used in a wide range of applications today. This paper is about methods of influencing the characteristic force-stroke-curves of magnetic actuators by means of different pole geometries. The conical design of the stator pole which is mostly used to accomplish proportional solenoids is analyzed by both a simple analytic reluctance model and a FEM model ...

Enhancement of Terahertz Emission by AuGe Nanopatterns

H. Surdi[1], A. Singh[1], S. S. Prabhu [1]
[1]Tata Institute of Fundamental Research, Homi Bhabha 
Road, Mumbai,India

Since the advent of Terhertz(THz) technology, improving the THz emission power has been one of the major research goal. One of the methods to increase the THz emission power is to increase the coupling of excitation laser light to the dielectric substrate.The field of nano-plasmonics exploits light-matter interactions at nanometer scale. With the help of metallic nano-structure at ...

Design & Development of Helmholtz Coil for Hyperpolarized MRI

V. Bhatt, R.S Rautela, P. Sharma, D.C. Tiwari, and S. Khushu
Institute of Nuclear Medicine & Allied Sciences (DRDO), Delhi, India

The Helmholtz Coil generates a uniform magnetic field. The commercially available large-size Helmholtz coils prove to be very expensive. This paper describes the economical method of designing and construction of a Helmholtz coil. COMSOL Multiphysics AC/DC Module simulated results and actual results were compared in this study. The coil serves as a component in the system for Hyperpolarisation of ...

Electromagnetic and Thermal Modeling of Vacuum Distillation Furnace

Asif Ahmad Bhat[1], D. Sujish[1], Sourabh Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Vacuum distillation furnaces (VDFs) are employed for purification and consolidation of heavy metals from their dendritic forms which are entrained with molten salts. The VDF is an induction heated furnace which is operated at a temperature of 700-1400 °C and at a pressure of 0.01-600 torr. To arrive at the adequate design of such type of furnace, magnetic field and temperature distribution need ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...

Calculation of Cable Parameters for Different Cable Shapes 

H. Lorenzen[1], J. Timmerberg[1], and S. Mylvaganam[2]
[1]Department of Electrical Engineering, UAS OOW, Wilhelmshaven, Germany
[2]Department Technology/Engineering, Telemark University College, Porsgrunn, Norway

Efforts involving simulation of  transmission line networks necessitate the accurate values of the parameters of the lines. In this paper, as an attempt in estimating such parameters, the parameters of high voltage asymmetric power lines are calculated. In the process of estimation, the three phase equivalent circuit model is used. The resistance and inductance of such lines are dependent on ...

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

A Novel Mechanical Stress Measurement Method Applied to Wind Turbine Rotor Blades

A.H. Hegab[1], J.P. Kaerst[1]
[1]HAWK, University of Applied Sciences and Arts, Goettingen, Germany

Rotor blades for wind turbines are made of GFRP material. They have to be designed to withstand wind and weather over their approximately 20 years of lifetime. The ability to monitor the mechanical stress is crucial in order to reduce maintenance costs and to maximize operational availability. This paper presents the combination of SPICE® and COMSOL Multiphysics®, in order to reduce ...

Quick Search

1 - 10 of 362 First | < Previous | Next > | Last