Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Electromagnetic Stirrers and Brakes Applied in the Metallurgical Field

C. Mapelli
Politecnico di Milano

The control of the flux within continuous casting systems used in the metallurgical field can be obtained through the application of electromagnetic. The model here has been solved through a linear time-harmonic solver. The results of the electromagnetic model have then been applied to the fluid-mechanics model through volume Lorentz forces.

Modeling of a Preferential Oxidation Reactor in a LPG Hydrogen Generator for PEMFC

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

This paper presents a two dimensional model of a Preferential Oxidation Reactor. The main aim of the mathematical model was to investigate the process performance of the reactor by parametric analysis. Temperature and concentration profiles along the length of the reactor were evaluated in order to enhance optimization and control of the PROX unit.

Simulation of the Inverse Extrusion of a Brass Rod by the Coupling of Fluid, Mechanical, Thermal and Ale Modules

C. Mapelli, and L. Bergami
Politecnico di Milano

An efficient simulation of the inverse extrusion process has been performed through the coupling of three modules in COMSOL Multiphysics: fluid-dynamics, general heat transfer and ALE. The strain, the strain rate, and the stress field can be completely defined after the complete definition of the velocity field of the material under the action of the tool. The definition of the stresses and of ...

Simulation of the Inverse Extrusion of Brass Rod by the Coupling of Fluid Mechanical, Thermal and ALE Modes

C. Mapelli, and L. Bergami
Dipartimento di Meccanica, Politecnico di Milano

The complete coupling among the Incompressible Navier-Stokes - General Heat Transfer -ALE modes can be a reliable tool for the simulation of the plastic deformation process. This is shown here.

Quick Search

31 - 34 of 34 First | < Previous | Next > | Last