Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a common technique in which a small oscillating perturbation in cell potential is applied to an electrochemical system so as to interrogate the kinetic and transport properties. The Electroanalysis interface is used with a frequency domain study to simulate EIS for a range of electrode reaction rates. Nyquist and Bode plots illustrate the transition ...

Current Density Distribution in a Solid Oxide Fuel Cell, AC Impedance Study

This model presents a study of the current density distribution in a solid oxide fuel cell (SOFC). The model includes the full coupling between the mass balances at the anode and cathode, the momentum balances in the gas channels, the gas flow in the porous electrodes, the balance of the ionic current carried by the oxide ion, and a balance of electronic current. A truly large number of ...

Cyclic Voltammetry at an Electrode

Cyclic voltammetry is a common analytical electrochemical technique, where the potential at a working electrode is swept over a range and back again while the current is recorded. The current-voltage waveform, referred to as a voltammogram, provides information about the reactivity and mass transport properties of an electrolyte. For large electrodes, the model is simplified to a 1D geometry by ...

Mass Transport and Electrochemical Reaction in a Fuel Cell Cathode

A stationary 3D model of a generic fuel cell cathode describing the mass fraction distribution of oxygen, water, and nitrogen, as well as the current distribution. The model uses Darcy's Law to describe convection, and couples this to Maxwell-Stefan diffusivities to also describe mass transport. The model shows that the current density in this fuel cell cathode is mass transfer governed by the ...

1D Isothermal Lithium-Ion Battery

This model demonstrates the Lithium-Ion Battery interface for studying the discharge and charge of a lithium-ion battery for a given set of material properties. The geometry is in one dimension and the model is isothermal. Battery developers can use the model to investigate the influence of various design parameters such as the choice of materials, dimensions, and the particle size distribution ...

Tutorial Model of a Lithium-Ion Battery

The following example is a 2D tutorial model of a lithium-ion battery. The cell geometry is not based on a real application; it is only meant to demonstrate a 2D model setup.

Thermal Modeling of a Cylindrical Li-ion Battery in 3D

This example simulates the heat profile in an air-cooled cylindrical battery in 3d. The battery is placed in a matrix in a battery pack. The thermal model is coupled to a 1d-battery model that is used to generate a heat source in the active battery material. The model requires the Batteries & Fuel Cells Module and the Heat Transfer Module

1D Isothermal Nickel-Metal Hydride Battery

This model simulates the discharge of a Nickel-Metal Hydride (NiMH) battery using the Battery with Binary Electrolyte interface. The geometry is in one dimension and the model is isothermal. The model serves as an introduction to NiMH modeling, and can be further extended to include various side reactions.

Capacity Fade of a Li-ion Battery

This 1D model example demonstrates how to use the Events interface in conjunction with a battery cell model to simulate battery capacity loss during cycling. The battery is switched between constant voltage and constant current operation, both during charge and discharge. Cycleable lithium is lost in the negative electrode due to a parasitic lithium/solvent reduction reaction.

Liquid Cooled Lithium Ion Battery Pack

This model simulates a temperature profile in a number of cells and cooling fins in a liquid-cooled battery pack. The model solves in 3D and for an operational point during a load cycle. A full 1D electrochemical model for the lithium battery calculates the average heat source.

Quick Search

1 - 10 of 30 First | < Previous | Next > | Last