An Introduction to Modeling of Transport Processes

Ashim Datta and Vineet Rakesh, Cornell University, New York, USA

Organized around problem solving, this book gently introduces the reader to computational simulation of biomedical transport processes, bridging fundamental theory with real-world applications. Using this book the reader will gain a complete foundation to the subject, starting with problem simplification, implementing it in software, through to interpreting the results, validation, and optimization.

Ten case studies, focusing on emerging areas such as thermal therapy and drug delivery, with easy to follow step-by-step instructions, provide ready-to-use templates for further applications. Solution process using the commonly used tool COMSOL Multiphysics is described in detail; useful biomedical property data and correlations are included; and background theory information is given at the end of the book for easy reference.

A mixture of short and extended exercises make this book a complete course package for undergraduate and beginning graduate students in biomedical and biochemical engineering curricula, as well as a self-study guide.

Features:

Part I. Essential Steps:

  • Problem formulation;
  • Software implementation: what to solve
  • Software implementation: how to solve (preprocessing)
  • Software implementation: visualizing and manipulating solution (postprocessing)
  • Validation, sensitivity analysis, optimization and debugging

Part II. Case Studies:

  • Case studies

Part III. Background Material:

  • Governing equations and boundary conditions
  • Source terms
  • Material properties and other input parameters
  • Solving the equations: numerical methods.